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ABSTRACT

An analytical technique is developed to solve nonlinear longitudinal

combustion instability problems associated with liquid propellant rocket

motors. The analysis produces the transient and limit-cycle behavior of

unstable motors and the threshold amplitude required to trigger a linearly

stable motor into unstable operation. The limit cycle waveforms are

found to exhibit shock wave characteristics for most unstable engine operating

conditions. A method of correlating the analytical solutions with experi-

mental data is developed. Calculated results indicate that a second order

solution adequately describes the behavior of combustion instability

oscillations over a broad range of engine operating conditions, but that

higher order effects must be accounted for in order to investigate engine

triggering.
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SUMMARY

This report describes an analytical technique for the analysis of

nonlinear longitudinal combustion instability. The applications of this

technique, which is based on the Method of Weighted Residuals, is demonstrated

for a liquid propellant rocket combustor with a high impedance injector and a

short nozzle. Crocco's time lag theory is used to describe the unsteady

combustion response.

The methodology developed in this report can predict the linear stability

limits of the engine, triggering limits, and both the transient and final

periodic behavior of the combustion instability oscillations. It is shown

that the final periodic behavior of the instability is only dependent upon the

engine operating conditions (i.e.,' the Mach number, the combustion parameters n

and T, etc.), and is independent of the characteristics of the initial

disturbance. Computed results show that in most cases the final waveforms

exhibit shock-wave-type behavior, and that the number of shocks present within

the combustor is determined by engine operating conditions. It is also found

that the waveform of the resulting instability depends upon the proximity of

the operating point to engine resonant conditions (i.e., to the minimum point

on the linear stability limit). The predicted waveforms are used to develop

a technique for correlating the analytical solutions with experimental data.



INTRODUCTION

Experimental observations of rocket motors experiencing high frequency

longitudinal combustion instability show that in a majority of cases the

oscillations of the gas inside the combustor exhibit shock-wave characteristics.

These flow oscillations can'be initiated in two ways. In an intrinsically

unstable engine the instabilities are spontaneous in nature and they result

from any perturbation of the steady state flow field. On the other hand, some

engines require the introduction of a finite amplitude disturbance to produce

unstable combustion. In either case, the oscillations experience a transient

phase prior to the establishment of stable, periodic (i.e., stable limit cycle)

waves with oscillation frequencies that are usually close to the frequency of

one of the chaniber's acoustic modes. These observations suggest that a

nonlinear analysis, capable of predicting the limit cycle waveforms and the

conditions for which unstable combustion can be initiated by finite amplitude

disturbances of the steady state flow, is required.

In this report, the Galerkin method, that is a special application of

the Method of Weighted Residuals (see Ref. 1 for discussion of this method),

is used to develop an approximate mathematical technique for analyzing the

nonlinear behavior of rocket engines susceptible to longitudinal mode

combustion instabilities. The desired mathematical techniques are developed

by investigating longitudinal combustion instabilities in liquid propellant

rocket combustors with a high impedance injector and a short nozzle. The

Mach number of the combustor mean flow is assumed to be small. Crocco's

pressure sensitive time lag model
2

is used to describe the unsteady combustion

process.

The problem is analyzed'by solving the conservation equations describing

the behavior of large amplitude combustion-driven oscillations in low Mach

number mean flows. Because the solution of these equations requires a

relatively large amount of computations, a simpler'but more restrictive

second order analysis is developed concurrently. In this second order analysis,

the amplitude of the flow oscillations are restricted to be of the order of

the steady state flow Mach number, and terms of order higher than second order

are neglected. Hereafter, the former problem formulation will be referred to

2



as the third order theory, and the latter analysis will'be called the

second order theory. The applicability of the second order theory will'be

determined by comparing its results with third order solutions. It will be

shown that from a practical point of view, the results predicted by the second

order theory are comparable to those found by the solutions of the third order

theory.

The results obtained in this investigation are used to develop a

technique for correlating the analytical results with experimental data. An

empirical method for predicting the nonlinear waveforms is also discussed.

A User's Manual for the required computer programs is included in the

appendices of this report.

SYMBOLS

Ak(t) , Bk(t) , time-dependent coefficients in the series defined in

Ck(t), Dk(t) Eqs. (10) through (13)

Al semi-empirical peak amplitude of the first harmonic
defined in Pq. (28)

B1, B2, B3, B4 boundary conditions defined in Eqs. (5), (6), (8), and (9)

c sonic velocity

E1, E2 , E3, E4 flow equations, defined by Eqs. (1), (2), (3), and (7)

Il(k,t), I2(k,m,t), space integrals defined in Eqs. (22) through (26)

I3(k,m,)), I4(km,)),

I5(k,mt)

km,A summation indices and axial mode numbers

L combustor length

N number of terms used in series expansions

n interaction index

p dimensionless pressure, yp /PoCo*

q dimensionless acoustic-type velocity, defined in Eq. (14)

3



T dimensionless wave period, T co/

t dimensionless time, t co/L

t time correlation parameter
0

u dimensionless velocity, u /cO

w unsteady combustion mass source

z dimensionless axial coordinate, z /L

z dimensionless axial coordinate used in experimental
correlation

power exponent in experimental correlation

Y specific heat ratio

Ap' dimensionless peak-to-peak amplitude
max

6n vertical displacement at constant W in the n-T plane

e ordering parameter

v dimensionless specific volume, V p0

p dimensionless density, p/p*

T dimensionless pressure sensitive time lag, T Co/L

cP velocity potential

W dimensionless angular frequency, w L/co

l1 correlation parameter

Subscripts

e evaluated at the nozzle entrance

k,ml axial mode numbers

LS evaluated at the linear stability limit

R evaluated at retarded time, t = t-T

t time derivative

z space derivative



injector face stagnation quantity

Superscripts

perturbation quantity

steady state quantity

* dimensional quantity

approximate solution

DEVELOPMENT AND SOLUTION OF THE EQUATIONS

Problem Formulation

An analytical technique for investigating the nonlinear stability of

combustion-driven axial mode oscillations in liquid propellant rocket

combustors is developed. The combustor geometry is shown in Fig. (1). The

liquid propellants are injected uniformly through a high impedance injector,

converted by a complex combustion process into hot gases, and the gas products

are exhausted through a short nozzle. The nondimensional coordinate system

is defined with the origin at the injector face and the nozzle entrance plane

at z = z /L = 1. The thermodynamic variables are normalized by the correspond-

ing injector face stagnation quantities, the velocity is nondimensionalized

'by the injector face steady state stagnation sonic velocity, and time is

normalized by a characteristic time defined as the ratio of the combustor

length to the injector face stagnation sonic velocity.

In order to develop a problem formulation that is both simple and

physically meaningful, the following assumptions are made:

1. The flow is one-dimensional, with the velocity vector parallel to the

combustor axis.

2. The mean flow Mach number and its derivative are small.

3. The flow consists of a single constituent perfect gas and liquid

droplets of negligible volume.

5
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- I 

Injector Plate Boundary Condition:

u'(O,t) = O

Short Nozzle Boundary Condition

+ U -= constant
+ c

Figure 1. Combustor Geometry and Boundary Conditions

6



4. Viscosity, diffusion, and heat conduction are negligible.

5. The liquid droplet specific stagnation enthalpy remains constant as

the droplets move through the combustor.

6. The momentum sources arising from gas-droplet interaction are

negligible.

Even with these restrictions, the equations describing the behavior of

axial combustion instability oscillations are quite complex3. A simplification

of the analysis results when the relative importance of the various terms in

the conservation equations is established by using order of magnitude

arguments. In this analysis, the magnitude of each term appearing in the

conservation equations is evaluated and all terms whose magnitudes are

smaller than a certain threshold value are neglected. To accomplish this

task, two ordering parameters are used. One parameter, ue, is a measure of

the effect of the presence of mean flow upon the oscillations. The second

parameter, e, is a measure of the amplitude of the flow oscillations. This

investigation is concerned with the behavior of moderate and large amplitude

instabilities in combustors having low Mach number mean flows. Consequently,

terms of order higher than O(Ue) and O(ee e) are neglected. Under these

restrictions, the equations describing the behavior of the combustion

instability oscillations can'be written as follows3:

1. Continuity:

Ev= v + [2 w + d v2] (1)

l V U d / v -u + + d2 =0 (1)
1 t "z dz Z Z Z z dz

2. Momentum:

E2 =u + u + + U +- V P,+ - O (2)
2 t z dz z y z y

3. Energy:

=r I d , +/d'u' + + y(y-1) du ,2E
3
= Pt + up+Uz + -y + p u u =0 (3)

7



In writing these equations, the specific volume, v, is used instead of the

density, p, in order to simplify the numerical solution of the ordinary

differential equations that result from the application of the Galerkin
3

method
aw

t

The term - represents the unsteady mass generation by the burning fuel.

In the present analysis this unsteady mass source (or combustion response

function, as it is sometimes referred to) is described by Crocco's pressure

sensitive time-lag hypothesis . Accordingly, zz is then given by the follow-

ing relation:

zz = n -[p(zt) - p (Z,t- ] (4)

where n and T are the two parameters that Crocco used to describe the unsteady

combustion process. The interaction index, n, is a measure of the sensitivity

of the combustion process to flow oscillations and the sensitive time lag, F,

is representative of the time required for the unsteady combustion process to

respond to flow perturbations.

The computed solutions must satisfy the solid wall boundary condition at

the injector face; that is

B
1
= u'(O,t) = 0 (5)

and the quasi-steady short nozzle boundary condition3
4

at the nozzle entrance

B2 = u(l,t) - - ep'(l,t) + [Uep'(l,t)] 0 (6)

Additional simplification of the conservation equations is possible when

the amplitude of the instability is moderate. Under this condition, it is

possible to assume that the ordering parameters fe and e are of the same order

of magnitude and all terms of order higher than second (e.g., terms of

O(uee) or O(e3)) are negligible; all such terms are bracketed in Eqs. (1)

through (3). When these terms are neglected, Eqs. (1) through (3) can be

combined5 '6 into the following nonlinear wave equation:

8



E4 = z- tt d- t Y Tz 'Pt z- zt (-l)z -z = 0 (7)

where (P is the velocity potential defined by cz = u (z,t). The bracketed term

in the short nozzle boundary condition is also neglected, and the'boundary

conditions are written in terms of the velocity potential 6:

B
3
= z(o,t) = 0 (8)

B4 =z(l,t) + Y UeCt(l,t) = 0 (9)

It has been shown3 that solutions of Eqs. (7) through (9) adequately describe

the behavior of moderate amplitude axial instabilities, but that solutions of

Eqs. (1) through (6) are required to investigate axial mode triggering.

Solutions of both formulations of the problem are developed in this report.

Solution Technique

Closed-form mathematical solutions of the equations developed in the

preceding section are not known. As a result, it is necessary to resort to

the use of either numerical solution techniques or approximate analytical

techniques. The former approach is generally quite complex and its application

requires excessive computation time; furthermore, the use of numerical

solution techniques in general provides little physical insight into the

problem. An appealing approximate analytical technique has been developed by

Zinn and Powell '7 who investigated nonlinear transverse combustion insta-

bility problems. In these investigations, the undetermined function form of

the Galerkin method, that is a special application of the Method of Weighted

Residuals ' (MWR), is used to find the desired solutions.

In order to use the Galerkin method, it is necessary to represent the

dependent variables by means of approximate series expansions. The proper

choice of the series expansion is critical to the usefulness of the Galerkin

method. Various guide lines for the choice of the approximate series expansion
1,8are offered in the literature . In studies of combustion instabilities it

9



is convenient to use available experimental data, which indicates that the

behavior of high frequency combustion instability oscillations resembles the

behavior of the chamber's acoustic modes, as a guide. This information

suggests that the dependent variables of the problem be expanded in terms of

the natural acoustic modes of the chamber; each having an unknown time-

dependent coefficient. Using available acoustic solutions as a guide, the

following approximate series representations for the dependent variables are

used:

N

k=l

N
(z,t) = Z Bk(t) cos(kTz) (11)

k=l

N
q'(z,t) = Cck(t) sin(krrz) (12)

k=l

N
(z,t) = DOk(t) cos(krrz) (13)

k=l

the variable q. represents the "acoustic portion" of the velocity perturbation

u' that is given by

2
L.I 1 2 I eY _1 /2 +2 e'J

u (z,t) e t) - z + '(z,t) (14)

The particular choice of an expression for u , as given in Eq. (14), was

dictated by the requirement that the dependent variable satisfy the problem's

boundary conditions3 (i.e., Eqs. (5) and (6)).

The unknown time-dependent mode-amplitudes (e.g., An(t), Cn(t), etc.)

are determined by the following mathematical procedure. The assumed series

10



expansions are substituted into the conservation equations and boundary

conditions to form differential equation residuals and boundary residuals.

If a residual is identically zero, then the corresponding equation or boundary

condition is identically satisfied. On the other hand, when the equation or

boundary residuals are not identically zero, the residuals are the errors

that resulted from using the approximating expansions of the dependent

variables. According to the Galerkin method, these errors (i.e., residuals)

can be minimized in some average sense by requiring that the residuals satisfy

certain orthogonality conditions.7 '6'9 In the solution of the problem defined

by Eqs. (1) through (3), the boundary conditions, Eqs. (5) and (6) are

identically satisfied by the chosen series expansions, Eqs. (10) through (12),

and the required orthogonality conditions are defined by the following

relations3 :

1

ES cos(Trrz)dz = 0 = 1,...,N (15)

1

I sin(rrz)dz = 0 = 1,...,N (16)

1
. cos(tTrz)dz = O = 1,..,N (17)

On the other hand, the expansion of the velocity potential used in the

second order solution (i.e., Eq. (13)) does not satisfy the quasi-steady short

nozzle boundary condition, Eq. (9). In this case, the required orthogonality

condition is3 ,9:

cosQ(tTz)-dz - uet,(l,t) cos(t) =O t = 1,...,N (18)

The last term in the above equation represents the effect of the nozzle boundary

condition residual.

11



Performing the operations indicated in Eqs. (15) through (17) yields the

following system of quasi-linear ordinary differential equations describing

the behavior of the unknown mode-amplitude functions:

dAz
dt=F = (Qh)CI + QB -dt 1z z

N
+2 Z {e(kT)I(k, t)

k=l

+ ( (m)
2 (k,m,)CkAm +

m=l

UeAA - nu (BC-B )

- Ql(kT) Il(k,-) Bk

(m~) I3(k,m,)Ak Cm

- GeI3 (k,m, )AAm + Ql(m")I 4 (k,m,)BkAm

- Ql(mT)I4(k,m,t)AkBm + QlI
3
(k,m,)AkBm

- 2neI 3(k ,m,) (Bk-BkR)Am

+ Q23 (k,m,t)BkBm - 2Q2(mnT) I4(k,m, t)BkBml}

= F2 y(= - Y) Ct, - yreBt

N
+2 Z E

k=l

- YQ1 Bt + yn e(BC-BR)

+ YQl(kr) Il(k,) Bk

N
+ [(ml)I 2 (k,m,)CkBm - y(mrr)I3 (k,m,t)BkC
m=l

(Y-1)2 e i2(k,m,t)CkCm - yQI3 (k,m,t)BkBm

+ (Y+1) Q1 ( m n)I4(k,m,t)BkB m - yQ2I 3 (km, )BkB m

12

(19)

dBz

dt



+ 2yQ 2(mir) I4(k,m,8t)BkBJ}

dC{ N N
d t

2
k21 = 1I1(kF 2 + 2Q2 I4(k, ,mm)BkF 2 } +F

k~l m=l m

(20)

(21)

where

F = B - %C, + 2 

N (I (r

+ E (m~)I2(tmk)AkBm - (m=)I2(kC m

- Q1 (mr) I4(k, t,m)BkCm + Ql(krr) I5 (k,t,m)BkCm

-QlI 2 (,m,k) BkCj}

In the derivation of Eqs. (19) through (21) a linear steady state velocity

distribution, u = u z, has been assumed, and the following definitions have

been used:

Ii(k,t) = z sin(krrz) cos (Ltz) dz (22)

I2(k,m,Z) =

I3(k,m,A) =

J sin(krrz) sin(mrrz) cos (trrz) dz

j cos(krz) cos(mnrz) cos(tTz) dz
0

(23)

(24)

13



I
4
( k,m,A) = z cos (knz)sin(mrrz)cos (trz) dz (25)

0

I5(k,m,A) = Jz sin(krz) sin(mrz) sin(tz) dz (26)
0

and

2 e
Q1 = 2y e Q2 8y2 e

The second order solutions are found by performing the operations

defined by Eq. (18). The following equations describe the behavior of the

mode-amplitude function of the velocity potential:

d 2D2 dDt dD d 
=- (_tT) D - YUe dt + ynUe [ad t (t -

dt

N - U dDk

k=l

N 
+ I[(y-l)(m) 2I 3 (k,m,t) dt 

D
k

m
m=l

dD
-2(kT) (m) I12 (k,m,t) dt Dk]} (27)

The space integrals defined in Eqs. (22) through (26) are evaluated

numerically using a Simpson's rule algorithml
0

(see Appendix A). The

nonlinear behavior of axial mode instabilities are found by numerically

integrating either Eqs. (19) through (21), or, in the case of moderate

amplitude oscillations, Eqs. (27). In order to carry out these computations,

engine operating conditions (i.e., y, ie, n and T), and initial conditions

must be specified. The behavior of the mode-amplitude functions is followed

through the transient phase to the establishment of periodic oscillations.

The perturbation flow field is then calculated using either Eqs. (10) through
(12) or Eq. (13). When Eqs. (27) are used to describe the unsteady flow, the

14



pressure perturbation at any location within the chamber is related to cP by

the following second order momentum equation5' 6:

(zt) 2 [ t(-2) - w(c+2E)] (28)

A more detailed description of the solution technique outlined in the

preceding discussion is included in Appendix B. Typical numerical solutions

of these equations are presented and discussed in the following section.

RESULTS AND DISCUSSION

Nonlinear Solutions

Extensive computations have shown that the predicted nonlinear insta-

bilities are dependent upon the engine operating conditions and independent

of the nature of the initial disturbances. However, the computation time

required to reach limit cycle conditions is reduced when the waveform of the

initial disturbance is "close", in some sense, to the waveform of the limit

cycle oscillation. For example, the computation time required to reach a

discontinuous fundamental mode (1L) limit cycle oscillation is reduced when

the assumed initial disturbance has a 1L discontinuous waveform. In this

investigation it has been assumed that the engine is operating smoothly until

t = O, at which time a pressure disturbance is impulsively introduced inside

the chamber. The velocity perturbation is assumed to be initially zero. Both

spacially continuous and spacially discontinuous initial disturbances have

been used.

Typical transient and the resulting limit cycle oscillations are shown in

Fig. 2. Here, initial continuous fundamental mode perturbations distort

themselves into a discontinuous oscillation. When the amplitude of the initial

disturbance is larger than the amplitude of the limit cycle oscillation, the

transition to shock-wave-type behavior occurs within two cycles. On the other

hand, when the initial amplitude is small a longer time period elapses before

a shock wave is formed. In either case, the initial disturbances reach the

same limit cycle conditions. These data were generated by solutions of the

15
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second order wave equation (i.e., Eq. (27)); however, the same behavior is

exhibited by the solutions of Eqs. (19) through (20). It can also be shown3

that during the transient period the waves can change from one mode of

oscillation to another. Consequently, if for given engine operating conditions

the initial disturbance is not in the "proper" mode, then the solutions will

adapt themselves to the operating conditions and the final periodic solution

will be in the mode of oscillation that is unstable. In other words, no a

priori knowledge of the behavior of the resulting instability is required in

order to use the analytical technique developed in this report.

The pressure envelope of the combustion instability oscillations is also

defined in Fig. 2. The pressure envelope is simply the band of the peak-to-

peak pressure amplitudes of the oscillations. The temporal behavior of the

pressure envelope will subsequently be used to investigate engine triggering.

It has been found in the course of this investigation that while the

second order. theory is capable of predicting the behavior of the final

instabilities in linearly unstable engines, it is unable to predict the

engine's triggering limits. It is shown elsewhere6 that this difficulty is

related to the mathematical structure of the resulting second order equations

for the mode amplitudes. In view of these results, it was decided to use the

second order theory, that requires considerably less computation time, to

investigate the behavior of stable limit cycles in linearly unstable engines,

while the third order theory will be used to study the behavior of triggering

limits. A justification for this approach is presented in Fig. 3 where

predictions of the second order and third order theories, for limit cycle

peak-to-peak pressure amplitudes, are compared. It is shown in Fig. 3 that

the predictions of both theories are in fair agreement over a wide region of

peak-to-peak pressure amplitudes. A possible reason for the observed

discrepancies is the different treatment of the nozzle boundary condition in

the two theories3. It has also been shown3 that the waveforms predicted by

the two theories are in good agreement.

To determine the engine triggering limits,the minimum value of an initial

disturbance required to initiate instability in a linearly stable region was

determined numerically. For operating conditions where no disturbance can

cause instability, the engine is said to be absolutely stable. Due to the

17
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above-mentioned shortcomings of the second order theory, the third order

analysis is used herein to investigate the behavior of the triggering limits;

the results of this investigation will determine the manner in which the

problem's nonlinearities modify the engine linear stability limits. The

behavior of oscillations near a triggering limit are shown in Fig. 4. The

upper plot in Fig. 4 was obtained for an initial disturbance larger than the

triggering limit; it shows the growth of a pressure envelope. The lower plot

in Fig. 4 shows the behavior of an initial disturbance whose magnitude is

smaller than the triggering limit; the plot shows the decay of a pressure

envelope. The plots presented in Fig. 4 indicate that the threshold

disturbance amplitude required to trigger a linearly stable motor, at the

operating conditions in question, lies between the amplitudes of these two

initial disturbances. The threshold amplitude can be found by requiring a

zero growth rate of the threshold disturbance and linearly interpolating the

data shown in Fig. 4.

The nonlinear behavior of fundamental mode instabilities can be summarized

in an amplitude map of the type shown in Fig. 5. This figure shows linear and

nonlinear stability limits, and lines of constant peak-to-peak pressure

amplitude. According to Fig. 5, triggering can be obtained in the narrow

region between the linear stability limit (solid line) and the nonlinear

stability limit (broken line). The small extent of the triggering region is

evident at W = 1.623. Here, the vertical displacement of the nonlinear limit

from the linear stability limit is only 8
n
= n - nLS = - .02. The triggering

region for above resonant conditions (i.e., T < 1) is also narrow, and is

terminated at T = 2/3 where the second longitudinal mode becomes linearly

unstable. It can be shown3 that the concept of triggering becomes meaningless

in a region where one of the modes present in the series expansion is

linearly unstable. The significance of the parameter to/T, also shown in

Fig. 5, will be discussed in the following section.

The objective of the preceding discussions was to provide an indication

of the type of data that can be generated by the solution technique developed

in this report. Detailed presentations of these and related studies can be

found in Ref. 3.
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Correlation with Experimental Data

It has been shown in Reference 3 that the shape of the pressure waveforms

depends upon engine operating conditions. Specifically, the pressure waveforms

are dependent upon the proximity of the operating point to engine resonant

conditions (i.e., to nmin and min). The observed behavior of the stable

limit cycle pressure oscillations can be used to correlate the analytical

results with experimental data. To accomplish this task, two waveform

parameters are defined in Fig. 6. In this figure, the solid line shows the

numerically computed pressure waveform, and the broken line is the mean pres-

sure waveform used to determine the correlation parameters AP ax(Zr) and

to/T(zr); Zr is the normalized axial location for which experimental pressure

data is available.

Once Zr is specified, the analytical solution technique can be used to

determine both the limit-cycle amplitude map and the dependence of to/T on T.

Typical results are shown in Fig. 5. The values of Ap ax(Zr) and to/T(zr)

found from experimental pressure data are then used, in conjunction with the

data presented in Fig. 5, to determine the engine operating conditions in

terms of n and T.

Semi-Empirical Pressure Waveforms

A semi-empirical method for predicting the pressure waveforms has been

developed. The objective of the semi-empirical method is to provide design

engineers with a straightforward technique, requiring relatively little

computation time, for predicting the nonlinear pressure waveforms. The semi-

empirical correlation method is based on the observation that the velocity

potential, cp, can be approximated, at least for resonant oscillations, by the

following series expansion:

N 
CP A1 E k cos(kwlt) cos(krrz) (29)

k=l

where Al, a, and w1 are found from computer-generated data. The nonlinear

pressure waveform is then found from Eq. (28).
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Numerical Results
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Figure 6. Theoretical Pressure Waveform Used to Determine to/T
0
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The parameters Al, Oa, and w1 are found from the behavior of the mode-

amplitude functions computed using Eq. (27) with a five term series expansion

(i.e., N = 5 in Eq. (13)). The parameters A1 and 1w are the maximum amplitude

and the frequency of the fundamental harmonic, respectively. The exponent, 0a,

accounts for the decrease in maximum amplitudes of the higher harmonics; it is

found from an empirical log-log plot of maximum mode amplitude versus the mode

number.

Normally, a ten term series (i.e., N = 10, in Eq. (13)) is required to

adequately predict the discontinuous waveforms3 . The required computation

time is approximately proportional to the square of the number of terms

retained in the series expansion. Consequently, the computation time required

for the semi-empirical method is considerably.shorter than that required to

solve directly for the pressure waveforms using the series solutions containing

the unknown time-dependent mode amplitudes.

Semi-empirical pressure waveforms are compared with computer generated

solutions in Fig. 7. Ten terms were retained in Eq. (28) in the computation

of the semi-empirical waveforms (i.e., N = 10 in Eq. (28)). It is evident

from the data shown in Fig. 7 that the semi-empirical method fails to

reproduce the waveforms at off resonant oscillations. The probable reasons

for this failure are:

1. There is a slight phase shift between the various modes at off-resonant

conditions.

2. For off-resonant oscillations, the higher harmonics are'both frequency and

amplitude modulated.

3. For off-resonant oscillations, the higher harmonics may not obey the

amplitude power law found'by considering the behavior of the first few

mode-amplitude functions.

DISCUSSION AND CONCLUDING REMARKS

An analytical technique has been developed for the analysis of nonlinear

longitudinal combustion instabilities in liquid propellant rocket motors. The

technique requires relatively little computation time and provides considerable

insight into the physics of the problem. The method does not require any
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a priori knowledge of the final form of the instability. The method can

predict triggering limits as well as the transient and final periodic

'behavior of the instability. Results predicted with the aid of this method

agree with available experimental data.

Results obtained with a second and a third order analyses show that the

second order analyses describes the behavior of longitudinal combustion

instability over a broad range of engine operating conditions. The third

order theory showed that longitudinal instabilities can be triggered in a

very narrow region outside the linear stability limits. The extreme

narrowness of the nonlinearly unstable region suggests that from a practical

point of view, the longitudinal stability limits of most engines are adequately

described by the linear stability limits.

A correlation technique, that can be used to correlate the analytical

results with experimental data, and a semi-empirical method for predicting

the waveforms of the instability, have been developed.
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APPENDIX A

PROGRAM SPAINT: EVALUATES THE SPACE INTEGRALS RESULTING

FROM THE APPLICATION OF THE GALERKIN METHOD

Statement of the Problem

Program SPAINT uses a Simpson's rule integration algorithm to

evaluate the space integrals resulting from the application of the

Galerkin method. A linear ramp Mach number distribution, 5(z) = e X z,

is used. The computed integrals are stored in a data file which is

used as input data in Program WAVES. The program user must specify

the step size to be used in the numerical integration, and the number

of terms retained in the series expansion(s) of the dependent variable(s).

The space integrals to be evaluated are given in Eqs. (22)

through (26) . The following definitions are made for the purpose

of computer storage assignment:

Array Integral Index (K)

T2(1,N,L) = f z sin(nnz)cos(Trrz)dz O (A.1)

0

T3(1,N,M,L) = fsin(nz) sin(mTrz) cos (trz) dz 1 (A.2)

0

T3(2,NM,L) = fcos (nrz) cos (mTz) cos (tzz) dz 2 (A.3)

0

27



Array Integral Index (K)

T3(3,N,M,L) = J z cos(nrrz)sin(mrz)cos(trrz)dz 3 (A.4)

0

T3(4,N,M,L) = fz sin(nrz)sin(mnz)sin(trrz)dz 4 (A.5)

0

The array indices N, M, and L vary from one to NEQ, where NEQ

is the number of terms retained in the series expansion(s) of the

dependent variable(s). As coded in this report, NEQ s 10. It is

recommended that a value of NEQ = 10 be used regardless of the number

of terms in the series. The reason for this choice is discussed in

the section of this appendix entitled "Recommendations on Program

Usage".

A standard Simpson's rule numerical integration algorithm (see,

for example, Conte 
1 0
) is used to evaluate the integrals. In this

procedure, the interval [0,1] is divided into 2N subintervals of

length h and the integral is evaluated using the following equation:

f()dz f 0 + 4f1 + 2f2 + 4f3 +... + 4f2N-1 2N]

0

The error involved in this numerical integration scheme is of the

order of h . The user specifies h, and h must be such that the interval

[0,1] is divided into an even number of subintervals.
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Input and Output

The required input data consist of the number of terms in the

series expansion(s) of the dependent variable(s), NEQ, and the integra-

tion step size, HI. The input data is read into the computer from

two data cards:

Card 1: NEQ, integer, is right justified in columns 1-10 (Format I10)

and NEQ < 10

Card 2: HI, floating point number, in columns 1-10 (Format F10.0)

The computed integrals are stored in an assigned data file (see

the section on the Deck set-up) and are printed in a straightforward

output format. The notation used in the printed output is self-

explanatory: L, N, and M are array indices (M = 0 for integral (A.1))

and K is the index which defines the integrand (e.g., K = 0 for

integral (A.1) , etc.)

A typical set of input data and a portion of the printed

output are respectively shown in Tables A.1 and A.2.

Deck Set-up

The deck set-up described herein is for the Univac 1108 Exec 8

system used at Georgia Tech. The manner in which data files are

assigned might be different at other computer facilities. The important

thing to note is that the data file number (I/O unit) assigned to the

output data of this program is used as the input data file number in

program WAVES. This program uses I/O unit 2 to store the data file.

Deck Set-up:

1. Run Card (I.D. Card)
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TABLE A.1. Sample Input For Program SPAINT

COLUMN

1-10 11-20

10

.02
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2. I/O unit assignment cards.

3. Main Program, MAIN. This program reads the input, calls subroutine

SUMM, and outputs the computed integrals.

4. Subroutine SUMM. This program specifies the integrand function,

f(x), and calls subroutine SIMPSN.

5. Subroutine SIMPSN. This program performs the Simpson rule integra-

tion of f(x). f(x) is defined in the External Real Function

Subprogram FOFX.

6. Real Function Subprogram FOFX. This program defines the integrand

function f(x) according to the integral index, K.

7. Input Data Cards.

Recommendations on Program Usage

Experience with this program has shown that an integration step

size of HI = .02 produces good results. Although NEQ can be varied

from 1 to 10, it is recommended that NEQ = 10 be used for the following

reason: Using this approach, one data set can be used to compute

nonlinear solutions (using program WAVES) for values of NEQ between

one and ten. Program WAVES is set-up to use the output generated by

program SPAINT in this manner. In summary, it is recommended that

values of HI = .02 and NEQ = 10 be used. Approximately 60 seconds of

computation time on a U-1108 are required in this case.
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FORTRAN Listing of Program SPAINT

C
C THIS PROGRAM EVALUATES THE INTEGRAL OF F(X) FROM O TO 1
C USING SIMPSON RULE
C
C THE MAIN PROGRAM READS THE INPUT, CALLS SUBROUTINE SUMM,
C AND OUTPUTS THE COMPUTED INTEGRALS. THE INTEGRALS ARE
C PRINTED AND STORED IN FILE 3 USING THE FASTRAN SYSTEM.
C THE F(X) ARE DEFINED WITH THE PRINTED OUTPUT
C THE SIMPSON RULE INTEGRATION IS PERFORMED IN
C SUBROUTINE SUMM. THE F(X) ARE DEFINED IN THE EXTERNAL
C FUNCTION SUBPROGRAM FOFX,
C
C INPUT DATA
C CARD 1 IN COL. 1-10 THE STEP SIZE, HI (ABOUT *01 TO .02)
C CARD 2 RIGHT JUSTIFIED IN COL. 1-10 THE NUMBER OF
C TERMS IN THE SERIES EXPANSION NEQ< OR = 10
C
C THE OUTPUT DATA IS DEFINED IN THE PRINTED OUTPUT
C
C THE COMPUTATION TIME ON THE U-1108 IS ABOUT 60 SEC FOR
C HI = .02 AND NEQ = 10.
C

COMMON/INTER/ T2(1,10,10),T3(4,1p,10010)
400 FORMAT (BI10)
402 FORMAT (10X,'OUTPUT FORMAT INTEGRAL FROM O TO 1 OF F(X)',/ )
403 FORMAT (1OX,'K=O IS F(X) = X*SIN(.*PI*X)*COS(L*PI*X)')
405 FORMAT (10X,'K=l IS F(X) = SIN(N*PI*X)*SIN(M*PI*X)*COS(L*PI*X)')
406 FORMAT (10X,'K=2 IS F(X) = COS(N*PI*X)*COS(M*PI*X)*COS(L*PI*X)')
407 FORMAT (10X,'K=3 IS F(X) = X*COS(!J*PI'*X)*SIN(M*PI*X)*COS(L*PI*X)')
408 FORMAT (1OX.'K=4 IS F(X) = X*SIN(N*PI*X)*SIN(M*PI*X)*SIN(L*PI*X)')
410 FORMAT (BF10.0)
430 FORMAT (lHlp 10Xt'SPACE INTEGRALS STEP SIZE = ',F5.3,

1 4X,'L ='I,2,/)
440 FORMAT (2I5p10E10.4)
450 FORMAT (/,8X,2HN=, I5, 9110, )
460 FORMAT (' K M'/)
800 FORMAT (5E15.8)

READ (5,410) HI
READ (5f400) NEQ

C INTEGRATION OF SPACE INTEGRALS
CALL SUMM (NEQ, HI)
DO 200 L=1,NEQ
WRITE (6,430) HIL
WRITE (6,402)
WRITE (6,403)
WRITE (6,405)
WRITE (6,406)
WRITE (6,407)
WRITE (6,40B)
wRITE (6,450) (I,I=1,NEQ)
WRITE (6,460)
M=O
K = 1
J = 0
WRITE (2,800) (T2(KNL),N=1,NEQ)
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WRITE (6,440) JM,(T2(KNL),N=I1NEQ)
DO 220 K=1,4
DO 230 M=1,NEQ
WRITE (2,800) (T3(KtNMtL),N=1pNEQ)

230 vRITE (6t440) K,M,(T3(KN,M,L)tN=1NEQ)
220 CONTINUE
200 CONTINUE

WRITE (2,800) HI
STOP
END

SUBROUTINE SUMM (NEQ, HI)
COMMON/INTER/ T2(1,10,10),T3(4,1G010'10)
NSM=1./HI + 1,01
DO 100 K=1t5
IF (K*GT.1) GO TO 1
MSTP=1
GO TO 3

1 MSTP=NEQ
3 DO 200 L=r1NEQ

AL = L*3.14159
DO 210 N=1,NEQ
AN = N*3.14159
DO 220 M=1,MSTP
AM = M*3.14159
CALL SIMPSN (KALeAMANSUM, NSMHI)
IF (K.GT.1) GO TO 4
T2(KPNL) = SUM
60 TO 5

4 KK = K-1
T3(KKNML) = SUM

5 CONTINUE
220 CONTINUE
210 CONTINUE
200 CONTINUE
100 CONTINUE

RETURN
END
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SUBROUTINE SIMPSN (KPALAMwANtSUMP NSMtHI)
EXTERNAL FOFX
X = 0.0
SUM = 0.0
DO 1 I=1,NSM
C = 1.0
IF (I.EQ.1) GO TO 2
IF (I.EQ.NSM) GO TO 2
C = 4.0
ID = 2*(1/2) - I
IF (IO.EQ.0) GO TO 2
C = 2.0

2 SUM = SUM + C*FOFX(KtX,AL,AM,AN)
1 X = X+HI
SUM = HI*SUM/3.0
RETURN
END

REAL FUNCTION FOFX (KvXAL,AMtAN)
GO TO (1,2,3t4t5)PK

1 FDFX = X*SIN(AN*X)*COS(AL*X)
GO TO 100

2 FOFX = SIN(AN*X)*SIN(AM*X)*COS(AL*X)
GO TO 100

3 FOFX = COS(AN*X)*COS(AM*X)*COS(AL*X)
GO TO 100

4 FOFX = COS(AN*X)*SIN(AM*X)*COS(AL*X)*X
GO TO 100

5 FOFX = SIN(AN*X)*SIN(AM*X)*SIN(AL*X)*X
100 CONTINUE

RETURN
END
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APPENDIX B

PROGRAM WAVES: COMPUTES THE COMBUSTION

INSTABILITY OSCILLATION WAVEFORMS

Statement of the Problem

Program WAVES computes the combustion instability oscillation

waveforms for combustors having a linear steady state velocity distri-

bution, u(z) = uez, for which Ue is small. Before this program can be

used, the space integrals must be evaluated using program SPAINT. The

computed integrals, together with the specification of the engine

operating conditions (i.e., n, T, ue, y, etc.), initial conditions,

and certain program control numbers, make up the required input data

for program WAVES.

Program WAVES performs the following functions:

1. For an initial peak pressure amplitude, initial values of the mode-

amplitude functions are computed.

2. The time-dependent mode-amplitude functions are found by a Runge-

Kutta-type numerical integration.

3. Perturbation pressures and velocities are computed.

4. A check for limit cycle conditions is made.

5. Printed and/or plotted output data is generated.

The program provides the user with various options. For instance,

function (3) may be omitted if only the behavior of the mode-amplitude

functions is desired. Similarly, function (4) is omitted when only the
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transient behavior of the instabilities is required. The use of

these and other user options are discussed in this appendix.

Two nonlinear solutions have been developed in this report:

(1) a second order analysis using a nonlinear wave equation, and (2) a

large amplitude analysis using a set of three conservation equations.

Consequently, two computer programs are required. These programs

have been written in a manner which permits a good deal of commonality.

In particular, the required input data is the same for all programs.

In order to achieve the commonality between the programs, the

definitions shown in Table B.1 have been made.

The relations defining the behavior of the functions An(t),

Bn(t), and Cn(t) are listed in Table B.2.

Program WAVES consist of 11 elements: MAIN, START, POFX, TREND,

FLOW, POUT2, POUT, RUNG, EQTN, PRMTRS, and WOUT1. The first seven

elements are the same for the three nonlinear solutions. The last four

elements are different for each nonlinear solution technique. The

functions performed by these elements are discussed in the following

paragraphs.

MAIN: Element MAIN serves the twofold functions of (1) reading

the data required to compute the nonlinear waveforms, and (2) calling

the required subroutines.

START and POFX: These two subroutines provide the initial values

of the mode-amplitude functions required for the integration of the

ordinary differential equations describing the behavior of the mode-
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Definition of the Mode-Amplitude Functions

Used in Program WAVES

Array Parameter

A(N)

B(N)

C(N)

An(t)

Bn (t)

Cn (t)

Description

Specific volume mode-amplitude function, used
only in the large amplitude analysis.

Pressure mode-amplitude function. In the analysis
using the nonlinear wave equation, Bn(t) represents
the time derivative of the velocity potential
mode-amplitude function.

Acoustic-type velocity mode-amplitude function.
In the nonlinear wave equation solutions, C (t)
represents the velocity potential mode-amplitude
function.

TABLE B.2. Eauations Governing the Mode-Amplitude Functions

Parameter Equation Number

Wave Equation

27

Third Order Equations

19

20

2127

An(t)

Bn (t)

Cn(t)
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amplitude functions. It is assumed that the conibustor is operating

in a steady manner until time t = 0, at which time a pressure disturb-

ance is impulsively introduced inside the combustor. The perturbation

velocity at t = 0 is zero. The user may specify a spacially continuous

initial pressure disturbance in any axial mode, or a spacially discon-

tinuous fundamental mode disturbance, with the discontinuity located

at z = .5 at t = O. The analytical expressions used to find the initial

conditions, found by a Fourier analysis of the initial waveform, are

given in the following equations:

(1) Spacially Continuous Pulse in the tth Axial Mode.

cA,(t = o) = o 0 = 1,...,N (B.1)

Bt(t = 0) = 0 n (B.2)

(2) Spacially Discontinuous Pulse.

CZ(t = 0) = O = l,...,N (B.3)

BA(t = O) = sin ) (B4)

where in both cases,

CA(t) = B't(t) = 0, for -T • t < O0, t = 1,...,N (B.5)
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An initial condition on At(t) is required for the large amplitude

analysis. Consideration of the linear behavior of the system shows

that v = -ply; consequently the following relation is used for an

initial condition on A,(t = 0):

At(t = 0) = -Bt(t = O)/y (B.6)

In the solution using the nonlinear wave equation, Eqs. (B.2) and

(B.4) merely approximate the spacial dependence of the initial impulse.

Specifically, these equations are based on a linear representation of

the initial disturbance, and the computed wave amplitude differs by a

factor of y from the specified pi'

TREND: This subroutine determines whether or not limit cycle

conditions have been reached. This task is accomplished by evaluating
NEQ

the summation S = nEl Bn(t) and examining the behavior of the summation.

Note that S represents the behavior of the injector face pressure.

Subroutine TREND performs the following functions:

1) Determines the maximum (positive) peak amplitude of one cycle of S.

2) Finds two successive average values of S for two cycles, Sl and S2,

respectively.

3) Compares the absolute difference, I asJ, between the two successive

averages with a user specified percentage, e, of the latter value of the

average S. If the IAS! < S2 then limit cycle conditions have been

reached.

4) Makes the appropriate change in the internal program control index



which tells the program that limit cycle conditions have been

reached.

FLOW: Subroutine FLOW computes the summations used to find the

perturbation flow field, outputs the computed pressure and velocity,

and calls subroutine POUT2. The summations computed are:

NEQ
SUMA = A(t) cos(nrrz)

n=l

NEQ
SUMB = E B (t) cos(nrrz)

n=l

NEQ
SUMC = E C (t) sin(n'rz)

n=l n

NEQ
SUMU = Z (nrr)C

n
(t) sin(nrrz)

n=l n

These summations are used in subroutine PRMTRS to calculate the

perturbation flow field.

POUT2 and POUT: Subroutines POUT and POUT2 plot the temporal

'behavior of B(N) (the pressure mode-amplitude functions) and the

temporal behavior of the pressure oscillations, respectively. The mode-

amplitude functions to be plotted are specified by the user. The axial

location(s) of the pressure plots are also user specified. The programs

have'been developed for use on a CALCOMP plotter.



RUNG: Subroutine RUNG is a modified Runge-Kutta numerical

integration algorithm. The modification accounts for the presence

of the retarded time variable. In this modification, the retarded

variable is treated as a known quantity; that is, it is treated in

the same manner as the independent variable. Two algorithms, based

on the Runge-Kutta equations developed in reference (12), are used.

One algorithm is used to integrate a set of second order O.D.E.'s;

the other is used to integrate a set of first order O.D.E.'s. The

required expressions are given in the following equations:

(1) First order O.D.E.'s; y(Ji) = f(J) yn Yn(t-]:

(j-i) = i + {K1 + K + 2FK + 

where

1 n= hf 'O)[ Yn(t e]

K = hf (j)[(n+K /2), Yn(t-'+h/2)]
2z t =hf n

K3 = hf(j)[(Y+K2 /2), yn(t-+h/2)]

= hf )(Y +K3 ), Ynt-+h)]4 t Rn 3 ) Yn t(j[~,) y"-n)



and where

y(j) = y (t)

y( +l) = yt(t +h)ytth

and f(j) ist, the function evaluated at t.

(2) Second order O.D.E.'s;

(j+) = y1(j)
t t y~

(j +1)
y~t

Ye, = fyn ' Yn(t Y ]

+ {K1 + K4 + 2[K2 + K3 ]}

= Y() + h{y(j) + [K1 +K 2 1
tYL f..(~L 16L~e + t 2K3A

where

K1 t = hf(J)[yn Yn' Yn(t-n ]

K = hf(J)[(y + +Yn K ) (K
n

+ Yn K1 n (Y
n

2 K1 ), Yn(t
n

+ K2 ) y(t -TK3 t = hf ()t I (yn
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td h ,n n ' Yn

and where

ylj ) = yt(t)

y(j+l) = yj(t+h)

y(j)
i Y'(i) = y/(t)

; y,(j+l) =yA(t+h)t, ~ y~t-)

The equations defining the numerical integration of a set of

first order O.D.E.'s is used in the solutions of the conservation

equations. The second order O.D.E. equations are used to solve the

nonlinear wave equation. The functional form of f$ is defined in

element EQTN.

In order to use the equations with the retarded variable, the

integration step size, h, must be selected such that h divides the

time lag, T, into K equal increments. Thus T = Kh, and the retarded

variables become:

Yn(t - e

yn(t - + h)

= yn(t - Kh)

= yn(t- Kh +h)

Yn(t - T + h) = Yn(t - Kh + h)



It has been found that an integration step size of the order

h - .05 produces satisfactory results. The program selects the

integration step size by forming the ratio T/.05, rounding off the

result to the nearest integer, and dividing T by the resulting integer,

that is:

integer = (T/.05) + .01

h = T/integer.

The computation of h is performed in element MAIN.

EQTN: Subroutine EQTN defines the functions, fe,, used in

subroutine RUNG to evaluate the K terms. The particular equations

defined in EQTN depend upon the problem under consideration (i.e.,

nonlinear wave equation, etc.). These functions are defined in Table

B.2.

PRMTRS: Subroutine PRMTRS uses the summations, SUMA, SUMB,

SUMC, and SUMU, computed in subroutine FLOW to calculate the perturbed

flow field. The current program is coded to compute the perturbation

pressure and velocity, using the following equations:

(1) Nonlinear wave equation solutions:

u'(z,t) = -SUMU

p'(z,t) = Y [SUMB(SUMB-2) + SUMU(2u(z) - SUMU)]p 2
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(2) Second order conservation equation solutions:

p'(z,t) = SUMB

u'(z,t) = SUMC + Y- Z SUMB
2y e

(3) Large amplitude solutions:

p'(z,t) = SUMB

u'(z,t) = SUMC

WOUT1: This program

functions.

+ [1 - t SUMB] e L -uZ SUMB
writ 4e suMBut 2 m e

writes the output of the mode-amplitude

Input Data

The required input data consist of the integral values computed

by program SPAINT, the engine operating conditions, and program control

numbers. The data from program SPAINT is automatically read from data

file 2. The remaining data is read from user supplied data cards.

These cards are described in this section.

46



(Format 8110)

Term Data Type2 Information Restrictions

No. of terms in the
series expansion of the
dependent variables

No. of axial locations
at which flow field is
to be computed

LIN = 1 to compute
linear solutions
LIN # 1 nonlinear
solutions

IPLOT
is to
IPLOT

= 1 if any data
be plotted
B 1 no plots

INPT = 1 to write the
space integrals
INPT f 1 space integrals
are not written

Card 2 (Format 8110)

Term Data Type Information Restrictions

I

I

I

LC1 = 1 to write the
mode-amplitude functions
LC1 ~ 1 mode-amplitude
functions are not written

LC2 = 1 to plot pressure
mode-amplitude functions
LC2 - 4 no plot of mode-
amplitudes

Number of terms to be
plotted

Incremental index between
terms to be plotted

10

•9

1. For integer data, indicates the column in which data is right
justified.

2. I denotes integer data; F denotes floating point (decimal) data.
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Card 1

Column1

I

I

I

10

20

30

40

50

< 10

<11

NEQ

NX

LIN

IPLOT

INPT I

Column

10

20

30

40

LC1

LC2

LC4

LC5



(Format 8110)

Term Data Type Information Restrictions

LP1 = 1 to calculate
p and u
LP1 ~ 1 flow field is
not calculated

LP2 = 1 to write p
and u
LP2 ' 1 p and u' are
not written

LP3 = 1 to plot p vs t
LP3 = 4 no flow field
(p ) plot

Number of axial locations
at which p vs t is to
plotted

Card 4 (Format 8I10)

Column Term Data Type Information Restrictions

I Number of T to be run

Card 5 (Format 8F10.0)

Information

Exit Mach number

Restrictions

small, << 1

Specific heat ratio

F Limit cycle amplitude
percent error

EPS = 0(.01)

Card 6 (Format 8F10.0)

Column Term Data Type

1-10 TBEGIN F

Information

Normalized time at which
output is begun, and at
which flow field calcula-
tion is started

Restrictions

see
discussion

Card 3

Column

10

20

30

LP1

LP2

LP3

LP4

I

I

I

I 4

10 NTAU

Column

1-10

11-20

Data TypeTerm

UE

GAMMA

F

F

21-30 EPS
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Column

11-20

Term

TEND

21-30 TLMCY

31-40 DELTAT

41-50 TSMP

51-60 DELPT

Data Type

F

F

F

F

F

Information Restrictions

Normalized time at which see
computations are discussion
terminated

Normalized time at which see
limit cycle check is discussion
begun

Normalized time increment see
for output of limit cycle discussion
conditions

Normalized time at which
plot of pressure mode-
amplitude is begun

Normalized time increment see
for plot of pressure mode- discussion
amplitude, B(N) vs t

Discussion of Card 6:

(1) BEGIN must be greater than or equal zero. TEND must'be such

that the ratio (TEND-TBEGIN)/H is less than 300. This ratio can be

estimated using a value of H = .05. Experience has shown that a time

increment of TEND-TBEGIN A 12. is sufficient to determine the behavior

of the solutions.

(2) If a limit cycle check is not desired, then set TLYMCY >

TEND.

(3) DELTAT must be such that DELTAT/H < 300. Usually, a

DELTAT - 6 is sufficient to verify that limit cycle conditions have

'been reached. In this case, approximately three fundamental mode cycles

are computed.

(4) If a limit cycle check is made, and if limit cycle condi-

tions are found, TSMP is automatically set equal to the initial time at
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which limit cycle conditions are found, if LC2 = 1.

(5) DELPT must be such that DELPT/H < 100. Good results have

been obtained using DELPT ' 3.9.

(6) If a limit cycle check is made, and limit cycle conditions

are not found, the data output begins at TBEGIN and ends at TEND.

Card 7

Column

1-10

(Format

Term

X(1)

11-20 X(2)

8F10.0)

Data Type

F

F

Information

Axial location at which
p and u are computed

Axial location at which
p and u are computed

Restrictions

•1

•1

X(INx)

Discussion:

If NX > 8, then two cards are required to complete the input of

X(I). In this case, X(9) is in columns 1-10 of card 7B, and so on.

Card 8 (Format 8110)

This card is included in

Column Term Data Type

10 IPX(1) I

20 IPX(2)

40 IPX(LP4)

I

I

the data set only when LP3 = 1.

Information Restrictions

Index of X(I) at which . 10
a p vs t plot is made

Index of X(I) at which •10
a p vs t plot is made

Index of X(I) at which
a p vs t plot is made

l10
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Discussion:

Plots can be made at any four (or fewer) axial locations at which

p is calculated.

Card 9 (8)1 (F10.0, 2I10)

Column Term Data Type

1-10 TAU F

20 NNB I

30 LCUT I

Information

Sensitive time lag

Number of n to be run
at the specified 7

Highest mode in which
energy feedback is
permitted

Restrictions

10

see
discussion

Discussion:

This number is used to eliminate the secondary zones of insta-

bility. For fundamental mode investigations, LCUT = 2 is usually

appropriate. For T > 1, energy feedback is only permitted in the

fundamental mode.

Card 10 (9) (8F10.0)

Column Term D

1-10 ANR(1)

11-20 ANR(2)

: ANR(NNB)

)ata Type

F

F

F

Information

First value of n

Second n

Restrictions

Final value of n

Discussion:

If NNB > 8, then two cards are used to input the ANR(I).

1. Number in parenthesis is the card number if card 8 (IPX(I) card) is
omitted.

51



Card 11 (10) (8110)

Column Term Data Type

10 NPI I

Card 12 (11) (F10.0, 8I10)

Column Term Data Type

1-10 PI F

20 IPOP I

Information

Number of initial
disturbances for each
n-T condition

Information

Initial disturbance
peak amplitude

If IPOP < 10, then an
initial disturbance in
the IPOP mode is gener-
ated
If IPOP = 11, then a
spacially discontinuous
fundamental mode wave,
with the discontinuity
at z = .5, is generated

This completes the description of the input data cards. If

NPI > 1, then card 12(11) is repeated NPI times. When NNB > 1, then

cards 11(10) and 12(11) must be repeated NNB times. Similarly, when

NTAU > 1, card 10(9) through 12(11) must be repeated NTAU times. An

example input data set is shown in Table B.3.

Using the input data shown in Table B.3, program WAVES performs

the following functions:

1. Nonlinear solutions are found at two axial locations using eight

term expansion(s). The exit Mach number is u = 0.2, and y = 1.2.
e

2. The mode-amplitude functions are printed, and the first pressure

mode-amplitude function is plotted.

3. The perturbation pressure and velocity are computed at z = 0.0 and
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TABLE B.3. Sample Input Data For Program WAVES
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COLUMNT

1-10 11-20 21-30 31-40 41-50 51-60

8 2 2 1 1
1 1 1 1
1 1 1 1
2

0.2 1.2 0.01
30.0 42.0 5.0 6.0 30.0 3.9
0.0 0.25

1
1.30 2 2
1.18 1.30

2
.025 1
.05 1

1
.15 11
1.0 1 2

1.10

1
.1 11__ _ _ _ _ __ _ _ _ _ __ _ _ _ _



z = 0.25. The results are printed and the temporal dependence of

the pressure oscillation is plotted at z = 0.0.

4. A limit cycle check is initiated at t = 5.0. If limit cycle

conditions are reached prior to t = 30.0, the required data is

output in a time interval of At = 6.0 after the establishment of

limit cycle conditions. On the other hand, if a limit cycle is not

reached by t = 30.0, the data is output in the time interval

30 < t < 42.0. The pressure mode-amplitude function is plotted

over at time interval of At = 3.9.

5. Solutions are to be calculated for two values of T. At the first

T (T = 1.30), the computations are to be made for two n (n = 1.18

and n = 1.30). The computations at T = 1.30, n = 1.18 are to be

made using two initial disturbances; a .025 and a .05 peak

amplitude LL pressure wave. The computations at F = 1.30, n = 1.30

are made for a discontinuous 1L pressure wave of peak amplitude

equal to .15. At the second F (W = 1.O), the computations are made

for an n = 1.10 and a discontinuous, .1 peak amplitude pressure

wave.

6. In both cases, energy feedback is only permitted in the first two

axial modes.

Output Data

The following data output options are available:

(1) INPT = 1 causes the space integrals used in the computations to be

written.

(2) LC1 = 1 results in a tabulated output of the mode-amplitude
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functions.

(3) LP2 = 1 results in the listing of p' and u as functions of t at

each axial location specified by X(I).

(4) LC2 = 1 causes plots of B(N) vs time to be made, with the N's

specified by the user.

(5) LP3 = 1 causes plots of p" vs time to be made at the axial

locations X(I) specified by the indices IPX(I).

Tne output limitations have'been discussed in the data input section of

this appendix. The output symbols are described in Table B.4. Portions

of an example output is shown in Table B.5.

Deck Set-up

The data set described herein is for the Univac 1108 Exec. 8

system as used at Georgia Tech. The important points are:

1. Unit 2 must be assigned to the data file SPAINT.

2. Unit 3 must be assigned to the CALCOMP PLOT subroutines.

It is convenient to group the program elements in the sequence

in which they are discussed in the first section of this appendix

(i.e., page 37). The program is then adapted to the solution of a

particular formulation of the problem (i.e., second order wave equation,

etc.) by changing the last four subroutines.
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TABLE B.4. Output Symbols

Symbol

A (1) potential mode-amplitude function, or
(2) specific volume mode-amplitude function

AP time derivative of the potential mode-amplitude

B pressure mode-amplitude function

C velocity mode-amplitude function

LINEAR LINEAR = 1, solutions are linear
LINEAR f 1, solutions are nonlinear

L axial mode number

M axial mode number

N (1) axial mode number, or
(2) interaction index

NEQ number of terms used in the solutions

P normalized perturbation pressure

PINITIAL peak amplitude of the initial disturbance

TAU sensitive interaction index, 7

Z axial station
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TABLE B.5 (cont.). Sample Output From Program WAVES:
Initial Pressure Pulse

INITIAL PRESSURE DISTRI3UTION

z p

.00000 .09216
*10000 .10684
.20000 ,09628
.30000 .09790
,40000 .11386
*50000 .OOnOO
.60000 -. 11386
.70000 '-.09790
,80000 -.09628
.90000 -. 106B4

1.00000 -,09216
1.10000 -.10684
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TABLE B.5 (concluded). Sample Output From Program WAVES:
Part of the Perturbation Flow Output

FLOW PRARA'ETERS Z= .000

LIN.AR= 2 NGEQ= 8 N= 1.10000 TAU= 1.000On
EXIT MACH= .200 SAMMA =,A200 PINITIAL =.1000

TIME_ PRSSURE VELOCITY_

-,QO.Q_-,1055+0X _.0000
* 050 -. 11n4+00 .0000
.1 O 0 -. lj+Qf. . no000
.150 -.1185+00 .0000

... ·200__-_,]B2+ 0 'Q __,gn_0_0_O
.250 -.9664-01 .0000
,0_0 _-,.98o7-01- U0 -I __-_00
.350 -, 11t2+00 .0000
*·400 -.12_130_n .0o000
.450 -_8656-01 .0000

...__5.Q0_- 2861.-_02_ .__,_DQ______
.550 .9295-01 .0000
· _.0Qo .1.479+00Q .0000
.650 .14q7+00 .00o00
. 70Q_._1 q4+0I1 , 00(00
.750 .9950-01 .0000
.80___ 1125+ __,.0000
.B50 .130o+0(l .0000
,9 0 ,130.9P_0L .0QOQ--
.950 .1168+00 .0000

1,000 .10 +00 .Q 000
1.050 .1143+00 .0000
1, _.O__.QU .1_7.6+ 0( . 0_09_ 0
1.150 *109q+00 .)000
_I_2 Q 0 ~UL_9 8__3!'O I *0000
1.250 .982b-U1 .0000
1.. 300 .10T,7+0, .OOO0
1.350 .9221-01 .0000
1 q__ 4 ,7_4_1_-_01____,_0__47Q
1.450 .5890-01 . t)000
1 ,5. 00 ,3_ 9- 01 . __. QQQ0'
1.550 -. 4975-02 .0000
15q0_ -626-- 0 .n0000
1.650 -. 1002+00 .0000
1.700 -_.loo1010+00 .0000
1.750 -. 3786-01 .uo000
1. aoo0 -, 9498-01 . 0000ooo
1.850 -.12u1+00 .000U
1.900 -. 13n9+00 . lt000
1.950 -.1133+00 0000U
2,050 -. 91L6-01 * 0000 _ _
2.050 -.9565-01 *0000
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FORTRAN Listing of Program WAVES

C
C THE SPACE INTEGRALS ARE STORED IN THE ARRAYS T2 AND T3. PROVISION
C IS MADE FOR ONE N BY N INTEGRAL, AND FOUR N BY N BY N INTEGRALS.
C MORE INTEGRALS CAN BE TREATED BY CHANGING THE APPROPRIATE DIMENSION
C STATEMENT.
C
C THE MODE AMPLITUDES ARE STORED IN THE ARRAYS At BP AND C. THE RETARDED
C VARIABLE IS STORED IN ARRAY 85. THE RETARDED VARIABLES REQUIRED AT
C THE INTEGRATION STEP IN QUESTION ARE STORED IN ARRAYS BR1, BR2, AND BR3.
C THE TERMS STORED IN THESE ARRAYS DEPENDS ON THE PROBLEM FORMULATION.
C 1. FOR THE NONLINEAR WAVE EQUATION
C A = BLANK
C B = TIME DERIVATIVE OF MODE AMPLITUDE
C C = MODE-AMPLITUDE FUNCTION
C 2. FOR THE SECOND ORDER CONSERVATION EQUATIONS
C A = BLANK
C B = PRESSURE MODE-AMPLITUDE
C C = VELOCITY MODE-AMPLITUDE
C 3. FOR THE LARGE AMPLITUDE ANALYSIS
C A = SPECIFIC VOLUME MODE-AMPLITUDE
C B = PRESSURE MODE-AMPLITUDE
C C = VELOCITY MODE-AAPLITUDE
C

DIMENSION ANR(10),DATA(2500)
COMMON/COMPI/ QP1,QP2,OP3pQP4,QP5,QP7
COMMON/COMS1/ QltQ2tGP1GST1
COMMON/FLODA/ NEQUeAJBTAUGAMMAPPIeLINtTN(10),IPOP
COMMON/PLTDA/ TARY(100),BARY(10,100)
COMMON/COM2/ B(lO),C(lO),BRl(lO),He.R2(10)BR3(10),BS(10llO)tA(10)
COMMON/COM3/ HpHD2,HD6PHD8
COMMON/COM4/ T2(1,1eo1O),T3(410,10o10))
COMMON/COM5/ X(11),IPX(4)
COMMON/COM6/ TSTARTTSTOPTLYMCY

400 FORMAT (BI10)
402 FORMAT (1OX#'OUTPUT FORMAT INTEGRAL FROM 0 TO 1 OF F(X)t./ )
403 FORMAT (10Xt'K=0 IS F(X) = X*SIN(N*PI*X)*COS(L*PI*X)')
405 FORMAT (1OX,'K=l I5 F(X) = SIN(N*PI*X)*SIN(M*PI*X)*COS(L*PI*X)')
406 FORMAT (1OX,'K=2 IS F(X) = COS(N*PI*X)*COS(M*PI*X)*COS(L*PI*X)O)
407 FORMAT (10X,'K=3 IS F(X) = X*COS(N*PI*X)*SIN(M*PI*X)*COS(L*PI*X)')
408 FORMAT (1OXt'K=4 IS F(X) = X*SIN(N*PI*X)*SIN(M*PI*X)*SIN(L*PI*X)t )

410 FORMAT (BF10.0)
430 FORMAT (lHl, lOX,'SPACE INTEGRALS STEP SIZE = '.F5.3,

1 4Xr'L =',I2#/)
431 FORMAT (/v8XP2HN= I5, 9110o )
432 FORMAT (' K M'/)
433 FORMAT (215,10E10.4)
450 FORMAT (lH1l//P1OXP'DIVERGENT SOLUTION't,//)
460 FORMAT (/lOX,5HTAU: ,FlO.5,5X,6HNRA= F10O.5S5Xt4HUE eF10O.5t

15Xt7HGAMMA= ,F10.5pSX,]OHPINITIAL ,F10O.5,
2//,1OXebHTIME= F10O.5,5X,6HB(N)= ,E10.4,5X,6HC(N): *E10.4)

800 FORMAT (5E15.8)
420 FORMAT (FlO0Or2110)

C
C
C

READ SPACE INTEGRALS FROM FILE 2
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DO 200 L=l,10
K : 1
READ (2O800) (T2(KN#L)N:1=l10)
DO 210 K=1,4
DO 220 M=l,10O

220 REAO (2,800) (T3(KNML),N1l,10)
210 CONTINUE
200 CONTINUE

READ (2,800) HI

READ INPUT DATA (EXCEPT COMB. PARAMETERS AND INITIAL DISTURBANCE

FIRST DATA CARD
NEQ = NO. OF TERMS IN EXPANSIONS
NX = NO. OF X/L AT WHICH FLOW FIELD CALCULATED
LIN = 1 TO CALCULATE LINEAR RESULTS
IPLOT = 1 TO PLOT ANY OUTPUT
INPT : 1 TO WRITE THE SPACE INTEGRALS READ FROM FILE 2

SECOND DATA CARD
C LC1 =
C LC2 =
C 
C LC4 =
C LC5 =
C THIRD DATA
C LP1 =
C LP2 =
C LP3 =
C =
C LP4 =
C FORTH DATA

1 TO WRITE C(N) AND B(N)
1 TO PLOT I(N)
4 NO PLOT OF 9(N)
NUMBER OF TERMS TO BE PLOTTED
INCRIMENTAL INDEX BETWEEN TERMS TO BE PLOTTED
CARD
1 TO CALCULATE U AND P
1 TO WRITE U AND P
1 TO PLOT P
4 NO PLOT OF P
NO. OF X/L AT WHICH P OR U TO BE PLOTTED
CARD

NTAU = NO. OF TAU TO BE RUN
FIFTH DATA CARD

UE = EXIT MACH NUMBER
GAMMA = SPECIFIC HEAT RATIO
EPS = AMPLITUDE PRECENT ERROR

SIXTH DATA CARD
TBEGIN = TIME TO START COMPUTATION OF FLOW VARIABLES AND

TO START OUTPUT
TEND = STOP TIME
TLMCY = START TIME OF LIMIT CYCLE CHECK
DELTAT TIME DELTA FOR OUTPUT OF LIMIT CYCLE OSCILLATIONS
TSMPI = START TIME FOR PRESSURE MODE-AMPLITUDE PLOT
DELPT = TIME DELTA FOR PLOT OF P MODE-AMPLITUDE

SEVENTH DATA CARD
X(I) = AXIAL LOCATION AT WHICH FLOW FIELD IS TO BE CALCULATED

EIGHTH DATA CARD (USED ONLY IF LP3t4)
IPX(I) = INDEX OF X(I) FOR WHICH PRESSURE IS TO BE PLOTTED

READ (5t400)
READ (5,400)
READ (5,4O)
READ (5.400)
READ (5,410)
READ (5,410)
READ (5E410)

NEQ.NX.LINIPLOTPINPT
LC1,LC2, LC4pLC5
LP1,LP2,LP3,LP4
NTAU
UEPGAMMAEPS
TBEGIN.TENDTLMCYDELTATTSMPIPDELPT
(X(I)tI=1.NX)

IF (LP3.EQ.4) GO TO 100

C
C
C
C
C
C

C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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READ (5,400) (IPX(I),I=1,LP4)
100 CONTINUE

C
C WRITE SPACE INTEGRALS IF INPT = 1
C

IF (INPT.NE.1) GO To 110
DO 700 L=1,NEQ
WRITE (6t430) HIL
hRITE (6,402)
WRITE (6,403)
WRITE (6.405)
WRITE (6.406)
WRITE (6.407)
WRITE (6f408)
WRITE (6,431) (II1ItNEG)
wRITE (6.432)
M =0O
K 1
J= O
WRITE (6.433) JM,(T2(KNL),N=1,NEQ)
DO 710 K=1.4
DO 720 M=1NEQ

720 wRITE (6.433) KtM,(T3(KNML),N=1NEQ)
710 CONTINUE
700 CONTINUE
110 CONTINUE

C CALL PLOT SUBROUTINE IF IPLOT = 1
C

IF (IPLOT.NE.1) GO TO 600
CALL PLOTS (DATA(1).2500,3)

600 CONTINUE
C
C CALCULATION OF SOME TERMS USED IN SOLUTION OF ODES
C

P2 = 3.14159*3.14159
QP1=6.28318*UE
QP2=(GAMMA-1,)*UE/2.
QP3=(GAMMA-1i)*P2
QP4=2.*P2
QP5=GAMMA*UE
QP7=P2
01 = .5*(GAMMA-1.)*UE/GAMMA
GP1 : GAMMA + 1.
GT1 = GAMMA*,5*(GAMMA-1.)*UE
Q2 = -Ql*.25*GP1/GAMMA

C
DO 1000 KTAU =1wNTAU

C
C READ COMBUSTION PARAMETERS
C

READ (5,420) TAUNNBLCUT
READ (5,410) (ANR(I),I=1INNB)

C
LTEMP = TAU/.05 + .01
H = TAU/LTEMP
HD2 = H/2.
HD6 = H/6,
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HD8 = H/B.
LTR = (TAU/H) + 1.01
DO 2000 KK=1,NNB.
READ (5,400) NPI
ANB= ANR(KK)
DO 510 LLL =1,NEQ
TN(LLL) = ANB
IF (LLL.GTLCUT) TN(LLL) = 0.0
IF (TAU.LT.1) GO TO 510
IF (LLL.NE.1) TN(LLL) = 0.0

510 CONTINUE
DO 3000 KKK=ltNPI
READ (5,420) PIlIPOP
TSTART TBEGIN
TSTOP = TEND
TSMP = TSMPI
KMT = 0
KMTS = DELPT/H + 1.0l
KPLT = 2
K2 = 2
LGO = 2
LOUT = 1

C
CALL START (LTRtTXPH)

C
KONTRL = 2
L = LTR
TSTOP1 = TSTOP + .10

340 IF (TX.GT.TSTOPI) Go TO 130
IF (L.NE.101) GO TO 140
LTMP = 102 - LTR
DO 150 L=1,LTR
DO 160 I=lNEQ

160 BS(IPL) = BS(ILTMP)
150 LTMP = LTMP + 1

L = LTR
140 CONTINUE

C
TEST = ABS(TX - TLMCY)
IF (TEST.LT.0.03) K2=1
IF (K2.NE.1) GO TO 320
IF (LGO.EQ.1) GO TO 320
PHIO = 0.0
DO 900 I=lPNEQ

900 PHIO = PHIO + B(I)
CALL TREND (TEST,PHIOLGO,EPS)
IF (LGO.EQ.2) GO TO 370
TSMP = TX
TSTART = TX
TSTOP = TX + DELTAT
TSTOP1 = TSTOP + .ln

370 CONTINUE
320 CONTINUE

C
CHECK = ABS(TX-TSTART)
IF (CHECKLT.0.04) KONTRL = 1
IF (KONTRL.NE.1) GO TO 330



IF (LCI.NE.1) GO TO 500
CALL WOUT1 (fiTX)

500 IF (LC2.EQ.4) GO TO 501
iF (KMT.GT.KMTS) GO TO 501
CHK1 = A35(TX-TSMP)
IF (CHK1.LE*0.04) KDLT 1
IF (KPLT.NE.1) GO To 501
KMT = KMT + 1
TARY(KMT) = TX
DO 504 KI=lP10
BARY(KMKMT) = B(KM)

504 CONTINUE
IF (KMT.NE.KMTS) GO TO 501
CALL POUT (LC4wLC5,KMT)
KPLT = 2

501 IF (LP1.NE.1) GO TO 502
CALL FLOW (NXtHTXLP2,LP3,LP4,LP5,LOUT)

502 CONTINUE
iF (LOUT.EQ.2) GO TO 3000

330 CONTINUE
L L+1
TX TX + H
LpO = L-LTR
LD1 = LDO + 1
DO 180 I:1,NEQ
BRI(I) = BS(IPLDO)
BR3(I) = BS(I.LD1)

lBO BR2(I) = (BR1(I)+BR3(I))/2.
C

CALL RUNG (NEQ)
C

DO 300 I=1,NEQ
BS(I,L) = B(I)
CHK1 = B(I)
CHK2 = C(I)
IF (CHK1.LT.10.0.AND.CHK2.LT.1090) GO TO 300
WRITE (6,450)
WRITE (6t460) TAU.ANBUEpGAMMA.PItTXPCHKlCHK2
GO TO 130

300 CONTINUE
GO TO 340

130 CONTINUE
3000 CONTINUE
2000 CONTINUE
1000 CONTINUE

STOP
END
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SUBROUTINE START (LTRTX.H)
EXTERNAL POFX
COMMON/FLODA/ NEQUEANBTAUGAMMAPIeLINPT(1O),IPOP
COMMON/COM2/ B(10),C(10),Rl(10),~R2(10),BR3(10),BS(10,110),A(10)

400 FORMAT (lHl,//,lOXt'INITIAL PRESSURE DISTRIBUTION't//)
410 FORMAT (12X,'Z', 9X 'P',/)
420 FORMAT (5X,4F10.5)

TX = -TAU
00D 1 N=1tNEQ
A(N) = 0.0
C(N) = 0.0

1 B(N) = 0.0
DO 100 L =1#LTR
TX = TX + H
DO 110 N=1,NEQ

110 aS(NPL) = 0.0
100 CONTINUE

TX = TX - H
DO 120 I:1INEQ
8(I) = POFX (IPItlPOP)
C(I) = 0.0
A(I) = -B(I)/GAMMA

120 BS(ILTR) = B(I)
wRITE (6P400)
wRITE (6,410)
X = 0.0

150 SUMB = 0.0
DO 140 I=1wNEO
ARG = 3.14159*X*I
C1= COS(ARG)
SUMB = SUMS + B(I)*C1

140 CONTINUE
P = SUM3
WRITE (6,420) X.P
IF (XGE.1.0) GO TO 200
X = X + .1
GO TO 150

200 CONTINUE
RETURN
END

REAL FUNCTION POFX (IPPI#IPOP)
IF (IPOP.EQ.11) GO TO 1

C
C CONTINUOUS WAVE IN IPOP MODE

POFX = 0.0
IF (IPOP.EQ.I) POFX = PI
GO TO 2

1 CONTINUE
C DISCONTINUOUS 1L WAVE

C = 2.*PI
A 1.5708*I
POFX = C*SIN(A)/A

2 CONTINUE
RETURN
END

66



SUBROUTINE TREND (TESTPHIOLGO'EPS)-
uIMENSION PHIMAX(6)
IF (TEST.GT.O.03) GO TO 1

K=1
M=1

1 IF (M.NE.1) GO TO 10
iF (PHIO.LE.O) GO TO 4
PHIBIG = PHIO
M-2
GO TO 2 -

10 IF (PHIO.LE.PHIBIG) GO TO 3

PHIBIG=PHIO
GO TO 2

3 IF (PHIO.GT.0) GO To 2
SIGN = PHIO*PHIM1
IF (SIGN.GT.O) GO To 2
PHIMAX(K)=PHIBIG
M=1
K-K+1

2 PHIM1=PHIO
IF (K.LE.4) GO TO 4
AV1=090
AV2=0.0
DO 5 I=1:2
AV1= AV1 + PHIMAX(I)
1P2= I+2

5 AV2 = AV2 +PHIMAX(IP2)
K=1
DELTA = ABS((AV2-AV1)/2.0)
CHECK= EPS*AV2/2.0
IF (DELTA.GT.CHECK) GO TO 4

LGO=1
GO TO 6

4 LGO=2
6 CONTINUE

RETURN
END
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SUBROUTINE FLOW (NXHPTXtLP2#LP3,LP4pLP#LOUT)
COMMON/FLODA/ NEQPUEPANBtTAU.GAMMAtPIPLINpT(10)
COMMON/COM2/ B(10)C(10)eftRl(10),F-.R2(10),3R3(10)wBS(10,llO)tA(10)
COMMON/COM5/ X(11).IPX(4)
COMMON/COM6/ TSTART,TSTOP.TLYMCY
COMMON/COM8/ ABC(303)tORDP(11303),ORDU(11,303)

400 FORMAT (1Hl /lOXP'FLOW PRARAMETERS' FlOXt3HZ= PF6.3e/ )
410 FORMAT (lUXt'LINEAR= ',I2p9XwtNEQ= ',I2 9Xt'N= tF7.5, 9XP'TAU= t

1 eF7.5r/,lOXP'EXIT MACH= fF5.3#3XtGAMMA =:F5F.3t 4X,'PINITIAL ='
2 ,F5.4,/)

420 FORMAT (11XP 4HTIME,3X, BHPRESSUREp3Xt8HVELOCITY / )
430 FORMAT (10XtF7.311E10.4)

TEST = ABS(TX-TSTART)
IF (TEST.GT.0.03) GO TO 1
K=1

1 CONTINUE
DO 110 N=1,NX
Al = 3.14159*X(N)
VEL=X(N)*UE
SUMA = 0.0
SUMB = 0.0
SUMC = 0.0
SUMU = 0.0
DO 120 I=1INEQ
TA= A1*I
ST = SIN(TA)
CS = COS(TA)
SUMA = SUMA + A(I)*CS
SUMB = SUMB + B(I)*CS
SUMC = SUMC + C(I)*ST
SUMU = SUMU + C(I)*I*3.14159*ST

120 CONTINUE
CALL PRMTRS (NPKSUMAtSUMBSUMCPSUMU#VEL)

110 CONTINUE
ABC(K) = TX
IF (TX.LT.TSTOP) GO TO 300
LOUT = 2
KSTOP K
IF (LP2.NE.1) GO TO 200
DO 310 J=l,NX
KOUNT = 44
DO 220 L=1,KSTOP
IF (KOUNT.NE.44) GO TO 210
WRITE (6,400) X(J)
WRITE (6t410) LINNEQfANB#TAUPUEPGAMMAPI
WRITE (6,420)
KOUNT = 1

210 CONTINUE
WRITE (6,430) ABC(L),ORDP(JvL),ORDU(JtL)
KOUNT = KOUNT + 1

220 CONTINUE
310 CONTINUE
200 IF (LP3.EQ.4) GO TO 300

CALL POUT2 (LP3tLP4,KSTOPNX)
300 CONTINUE

K = K+1
RETURN
END
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SUBROUTINE POUT2 (LP3,LP4,KSTOPNX)
COMMON/FLODA/ NEQUFtANBTAU,GAMMA,PILINT(10)
COMMON/COM3/ H
COMMON/COM5/ X(11),IPX(4)
COMMON/COMB/ ABC(303),ORDP(11,303),ORDU(11,303)
COMMON/COM9/ ORD(303)
CALL PLOT (0.0#2.0,-3)
CALL PLOT (0.0,11.0,3)
CALL PLOT (1.0,0.5,-3)
TERMS = NEQ
NPT = KSTOP
Jl = NPT + 1
J2 NPT + 2
SIZE = O.10*NPT
CALL SCALE (ABC,SIZE,NPT,1)
DO I J=1,LP4
DO 4 I=1,NX
ICHK = IPX(J)
IF (ICHK.NE.I) GO TO 4
Z = X(I)
DO 100 M=1,KSTOP

100 ORD(M) = ORDP(IM)
GO TO 110

4 CONTINUE
110 CONTINUE

CALL SCALE (ORD,4.0,NPT,1)
IF (J.NE.3) GO TO 2
DELX = SIZE + 4.0
CALL PLOT (DELX,-6.3,-3)

2 IF (J.E;.2.0R.J.E@.4) SO TO 3
CALL SYMBOL (2.90l1.80,.10,l32HNORMALIZED PRESSURE 'TIMF HISTORY,

1 0.0,32)
CALL SYMBOL (2.30,1.55,0.10, 3HN =,0.0,3)
CALL SYMBOL (3.30.1.55,0.10, 4HTAU=: 0.0.4)
CALL SYMBOL (4.50,1.55,0.10, 4HUE =,0.0,4)
CALL SYMBOL (5.60.1.55,0.10, 6HGAMMA=t 0.0,6)
CALL SYMBOL (2.30,1.30.0.10t 5HNEQ =:0.0,5)
CALL SYMBOL (3.30,1.30,0.10, 3HH= ,0.0,3)
CALL SYM30OL (4.50.1.30.0.10. 4HPI =O.0.#4)
CALL NUMBER (2.60,1.55,0.10,ANB'O.04)
CALL NUMBER (3.75,1.55,0.10,TAUO.0,4)
CALL NUMBER (4.95,1.55,0.10, UE,0.O03)
CALL NUMBER (6.25,1.55,0.10,GAMMA,0.0,3)
CALL NUMBER (2.80,1.30,0.10,TERMSO.O0-1)
CALL NUMBER (3.55,1.30,0.10,H,0.03)
CALL NUMBER (4.95.1.30,0.10,PI,0.0,3)

3 IF (J.EQ.2.0R.J.EQ.4) DELY = 5.3
IF (J.cEQ..OR.J.EQ.3) DELY = 4.0
DELX = 0.0
IF (J.EQ.1.OR.J.EQ.3) DELX = 2.0
CALL PLOT (DELXDELY,-3)
CALL SYM3BOL (1.80,-l.7npO.l4,4HX/L=, 0.0 ,4)
CALL NUMBER (2.40,-1.7o0,0.14, Zo.O,3)
CALL FACTOR (0.788)
CALL AXIS (0.0.0.0, 4HTIME,-4'SIZEO.O,ABC(J1),ABC(J2))
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CALL AXIS (0.0,-2.0. BHPRESSURE'84.gO90.,ORD(J1)tORD(J2))
CALL PLOT (0.0p-2.0,-3)
CALL LINE (ABCpORDpOJPTll,,1)
CALL FACTOR (1.0)

1CONTINUE
RETURN
END

SUBROUTINE POUT (NMDEISPNPT)
DIMENSION COEF(100)
COMMON/FLODA/ NEOQtUEANBpTAUGAMMAPPIpLINPT(10)
COMMON/PLTDA/ TIM(100)p BS(10l100)
COMMON/COM3/ H
EON = NED
JI=NPT+1
J2=NPT+2
CALL SCALE (TIMv4.0#NPTt1)
CALL PLOT (0.0,2.0,-3)
CALL PLOT (0.011.o0,3)
CALL PLOT (O.w00.5f-3)
KOUNT = 1
DO 110 I=1:NMDEISP
L = IL=I1
DO 120 K=l1NPT
COEF(K)=BS(IPL)

120 L=L+1
CALL SCALE (COEF2.*0tNPTF1)
IF (KOUNT.NE.1) GO TO 1
CALL SYMBOL (3*0,1.3#0.10p27HTIME DEPENDENT COEFFICIENTSPO.0t27)
CALL SYMBOL (3.5.1.tO.10#14HTERM EXPANSION0.0t14)
CALL SYMBOL (3.00.9,0.10p29HTAU= NBAR= H=0.O29)
CALL SYMBOL (3.00O.7,0.1020HGAMMA= MACH=tO.OP20)
CALL NUMBER (3.0,1.10.10 EQNtO.CE-1)
CALL NUMBER (3.5t0.9p0.10.TAUt0.0t3)
CALL NUMBER (4.9p0.9t0.10tANB0o0.t3)
CALL NUMBER (6o0t0.9.0.lO0Hi0.0p3)
CALL NUMBER (5.1070.7.10tUE .0.0p3)
CALL NUMBER (370.7.7O0.10GAMMA0.0O3)
CALL PLOT (2.0.0.5.-3)

1 Y=2.5.
CALL PLOT (O.0#Yp-3)
CALL AXIS (.0.Ot4HTIME-44.,t0.0OTIM(J1) TIM(J2))
CALL AXIS (0.0,-1.0,5H~N(T) 5.2.0.90.0tCOEF(J1)*COEF(J2))
CALL SYMBOL (4.50.0,O0.10r2HN=,0.0p2)
TERM = I
CALL NUMBER (4.B80.o0.010pTERM o.o0,-1)
CALL PLOT (0.0p-1.0,-3)
CALL LINE (TIMpCOEFNPTtl.0l1)
CALL PLOT (0.01.0,-3)
IF (KOUNT.NE.3) GO TO 20
CALL PLOT ( 8.0-8.0-3)
KOUNT =1
GO TO 110

20 KOUNT = KOUNT + 1
110 CONTINUE

CALL PLOT (8.00.0.-3)
CALL PLOT (0.0.0.0.999)
RETURN
END
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Section of the Program Used to Solve the Nonlinear Wave Equation

SUBROUTINE RUNG (NEW)
C
C INTEGRATION OF SECOND ORDER ODE WITH RETARDED VARIABLE.
C USE WITH SECOND ORDER WAVE EQUATION ANALYSIS.
C

EXTERNAL EQTN
DIMENSION R(10,4),BB(10).BPB(10).B1(10).BPBl(10)
COMMON/COM2/ BP(10). B(10),Rl(10),R2(10)tR3(l10)tBS(lO,110)DM(10)
COMMON/COM3/ HtH2pHO6fH8
DO 100 I=1,NEQ
R(I,1) = H*EQTN(I, R1,BBP)
BPB(I) = BP(I)+ R(I.1)/2.

100 BB(I) = B(I) + H2*BP(I) + HB*R(I,1)
DO 110 I=1PNEQ
R(I,2) = H*EQTN(I, R2 ,BBFBPB)
BPB1(I)= BP(I)+ R(I.2)/2.

110 BB1(I)= B(I)+ H2*BP(I) +HB*R(It1)
DO 120 I=1:NEQ
R(1,3)= H*EQTN(I, R2 ,BB1,BPB1)
BPB(I)= BP(I)+R(I,3)

120 BB(I) = B(I) + H*BP(I) +H2*R(I,3)
DO 130 I=1:NEQ

130 R(If4)= H*EQTN(Io R3 ,BBtBPB)
DO 140 I=1iNEQ
B(I) = H*(BP(I)+(R(I,1)+R(I,2)+R(I,3))/6.) + B(I)

140 BP(I)= (R(I,1)+2.*(R(I,2)+R(I,3))+R(It4))/6. +BP(I)
RETURN
END

REAL FUNCTION EQTN(LFYPRtY#YP)
C
C SECOND ORDER WAVE EQUATION
C

DIMENSION Y(lO)YP(10),YPR(10)
COMMON/COMP1/ QlQ2,Q3eoQ4Q5,Q7
COMMON/COM4/ T2(11O10O),T3(4.10,10,10)
COMMON/FLODA/ NEQUEANBTAUGAMMAPILINT(10)
DI = -L*L*Q7*Y(L) - Q5*(YP(L) - T(L)*(YP(L) - YPR(L)))
SUM=.O
DO 100 N=1PNEQ
S1 = Q1*N *YP(N)*T2(1fNL)
52 =((-1)**(N+L ))*YP(N)*Q2
SUMl=.O
IF (LIN.EQ.1) GO TO 1
DO 110 M=,1NEQ
S53 = Q3* M*M *YP(N)*Y(M)*T3(2pNML)
S4 = Q4* N*M *Y(N)*YP(M)*T3(1#NpMeL)

110 SUM1= SUM1+S3-54
1 CONTINUE

100 SUM = SUM + SUM1 +Si-S2
EQTN = D +2.*SUM
RETURN
END

71



SUBROUTINE PRMTRS (N,K,SUMA,SUMB ,SUMC,SUM[,VEL)

SUBROUTINE FOR CALCULATING FLOW PARAMETS FOR WAVE EQUATION

COMMON/FLODA/ NEQ,UE ,AiNB, TAU,GAMA ,PI, LIN,T(1)
COMMON/COM5/ X(ll),IPX(4)
COMMON/COM8/ ABC(303) ,ORDP(11,303) ,ORDU(11,303)
ORDU(N,K) = -sUMU
IF (LDn.EQ.1) GO TO 1
ORDP(N,K) = GAMA*(SUMB*(SUJ-2.) +SUMU*(2.*VLSUMU) )/2.
GO TO 2

1 ORDP(N,K) = GAMMA*(-SUMB + VEL*SUMU)
2 CONTINUE

RETURN
END

SUBROUTINE woUTI1 (HTX)
COMMON/FLODA/ NEQUEANBrTAUGAMiMAPILINPT(10)
COMMON/COM2/ B(10)tC(lO)t3Rl(lO),;~R2(10)t9R3(10)pBS(10l110)fA(10)
COMMON/COM6/ TSTART,TSTOPTLYMCY

20 FORMAT (3XF7.3v10E10.4)
30 FORMAT (1H )
40 FORMAT (lH110OX,'TIME DEPENDENT COEFFICENTS OF THE 'O

1 ,'NONLINEAR WAVE EQUATION PHI = A(T)*COS(N*PI*Z)'tt/ )
51 FORMAT (5X,'TIME AP1 AP2 AP3 AP4 AP5

1 AP6 AP7 APB AP9 AP10')
52 FORMAT (5Xo'TIME Al A2 A3 A4 AS

1 A6 A7 AB A9 A10')
10 FORMAT (10X,'LINEAR= ',I2,9X,'NEQ= 'PI2 9XtIN= 'tF7.5, 9XP'TAU= '

1 ,F7.5,/,lOX,'EXIT MACH= ',F5.33X,'GAMMA ='.FS5.3 4XP'PINITIAL ='
2 ,F5.4,/)
TEST = ABS(TX-TSTART)
IF (TEST.GT.0.030) GO TO 10
K = 16

10 IF (K.NE.16) GO TO 2
WRITE (6,440)
WRITE (6#410) LINtNEQANBTAUUEGAMMAPI
wRITE (6,452)
WRITE (6#451)
K=1

2 WRITE (6,430)
WRITE (6,420) TX,(C(I),I:=1,NEQ)
WRITE (6,420) TX,(B(I)tI:1,NEQ)
K-K+1
RETURN
END

C
C
C

4,
4
4

4

4

4
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Section of the Program Used in the Analysis of Large Amplitude
Oscillations

SU3ROUTINE RUNG (NEQ)
C
C INTEGRATION OF FIRST ORDER ODE WITH RETARDED VARIABLE
C USE WITH LARGE AMPLITUDE ANALYSIS
C

DIMENSION RAl(10),RA2(lO),RA3(10),RA4(10)pRBl(lO)RB1 B2(10).R33(10)p
1RB34(10)RCl(10),RC2(10),RC3(l10)RC4(10)tAl(10),A2(10)eBl(10)t
2B2(10)vCl(10),C2(10)
COMMON/COM2/ B(10)#C(10)lOBRl(10),R2(10),BR3(10),BS(0I,110),A(10)
COMMON/COM3/ HtHD2#HD6
CALL EQTN (AtB'CBR1,RA1#RB1,RC1)
DO 100 I =INEQ
A(I) = A(I) + HD2*RA1(I)
B1(I) = B(I) + HD2*RB1(I)
C1(I) = C(I) + HD2*RC1(I)

100 CONTINUE
CALL EQTN (Al'BlCI,BR2,RA2.RB2,RC2)
DO 110 I:lNEQ
A2(I) = A(I) + HD2*RA2(I)
B2(I) = B(I) + HD2*RB2(I)
C2(I) = C(I) .+ HD2*RC2(I)

110 CONTINUE
CALL EQTN (A2t82pC2.BR2tRA3tRB3tRC3)
DO 120 I=1,NEQ
AI(I) = A(I) + H*RA3(I)
BI(I) = B(I) + H*RB3(I)
C1(I) = C(I) + H*RC3(I)

120 CONTINUE
CALL EQTN (Al 'B1 ,C1,BR3,RA4pRB4,RC4)
DO 130 I=1,NEQ
A(I) = A(I) + HD6*(RA1(I)+RA4(I)+2.*(RA2(I)+RA3(I)))
b(I) = B(I) + HD6*(RB1(I)+RB4(I)+2.*(RB2(I)+RB3(I)))
C(I) = C(I) + HD6*(RCl(I)+RC4(I)+2.*(RC2(I)+RC3(I)))

130 CONTINUE
RETURN
END
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SUBROUTINE PRMTRS (N,K,SUMAA,SUMB,SUMC,SUMU,VEL)
C
C SUBROUTINE FOR CAICULATING FLOW PARAMETERS FOR LARGE AMPLITUDE WAVES
C

COMMON/FLODA/ NEQ,UEANB,TAU,GAMMA,PI,LIN,T(2O)
COMMON/COMS1/ Q1,Q2,GP1,GT1
COMMON/COM5/ X(11) ,IPX(4)
COMMON/COMN/ ABC(303),0oRnP(11,303),ORDU(11,303)
ORIP(N,K) = SUM
IF (LIN.EQ.1) GO TO 1
ORDU(N,K) = suC + (Q1 + Q2*SUMB)*SUMB*x(N)
GO TO 2

1 ORDU(N,K) = SUMC + Ql*SUNB*x(N)
2 CONTINUE

RETURN
END

SUBROUTINE WOUT1 (H,TX)
COMMON/FLODA/ NEOUE,ANBTAUGAMMAPI'LIN'T(10)
COMMON/COM2/ B(10),C(ln)pqRl(10),FR2(10),BR3(10),BS(1O,110),A(10)
COMMON/COMS1/ 01IQ2,GP1pGT1
COMMON/COM6/ TSTART,TSTOPTLYMCY

420 FORMAT (3XF7.3,10E10*4)
430 FORMAT (1H)
440 FORMAT (ClHl1OX,'TIME DEPENDENT COEFFICENTS OF THE '.

1 'LARGE AMPLITUDE SOLUTIONS''/)
450 FORMAT (5X,'TIME B1 82 83 B4 B5

1 86 B7 88 89 B10')
451 FORMAT (5X,'TIME C1 C2 C3 C4 C5

1 C6 C7 C8 C9 CiaO')
452 FORMAT (5X,'TIME A1 A2 A3 A4 A5

1 A6 A7 A8 A9 A10')
410 FORMAT (1OX,'LINEAR: ',1I2,9X,'NEQ: '.I2, 9X,'N= '*F7.5, 9X,'TAU= '

1 *F7.5,/,lOX,'EXIT MACH= ',F5.3,3X,'GAMMA =',F5.3, 4X,'PINITItAL ='
2 PF5.4,/)
TEST = ABS(TX-TSTART)
IF (TEST.GT.0.030) GO TO 10
K= 12

10 IF (K.NE.12) GO TO 2
WRITE (6,440)
wRITE (6,410) LINNEOANBPTAUUEPAMMAPI
WRITE (6,452)
WRITE (6.450)
wRITE (6,451)
K-1

2 WRITE (6,430)
WRITE (6t420) TX,(A(I),I:1lNEQ)
WRITE (6,420) TX,(B(I),I=:1NEQ)
WRITE (6,420) TX,(C(I),I=IeNEQ)
K=K+1
RETURN
END
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SUBROUTINE EQTN (A#BC,BRRA,RBRC)

LARGE AMPLITUDE EQUATION

DIMENSION A(10) B(lO),C(10),BR(lO),RA(10),RB(10),RC(lO),FX(10)t
lF2(10),F3(10)
COMMON/COMS1/ QlQ2.GPliGT1
COMMON/FLODA/ NEQPUEANBTAUGAMMAPPILINT(10)
COMMON/CDM4/ T2(11lOl0),T3(4t10lOtlO0)
DO 100 L=1,NEQ
PIL = L*3.14159
SO1 =PIL*C(L) + Q1*R(L) - T(L)*UE*(B(L) - BR(L))
SO = -UE*A(L) + SO1
RO = -GAMMA*(SOI+ UE*B(L))
UO = PIL*B(L)/GAMMA - UE*C(L)
SUMN1 = 0.0
SUMN2 = 0.0
SUMN3 = 0.0
DO 110 N:INEQ
PIN N*3*.14159
S1 PIN*T2(1,N,L)*A(N)
S2 PIN*T2(1,NL)*R(N)
RI PIN*T2(1r JL)*B(N)
U1 l PIN*T2(1,L,N)*C(N)
SUMMI = 0.0
SUMM2 = 0.0
SUMM3 = 0.0
IF (LIN.EQ.1) GO TO 200
DO 130 M-1,NEQ
PIM M*3.14159
S3 PIM*T3(1,N,ML)*C(N)*A(M)
54 = PIM*T3(2,NML)*A(N)*C(M)
S5 T3(2,NML)*A(N)*A(¢)
S6 PIM*T3(3,N,MpL)*(B(N)*A(M) - B(M)*A(N))
SB T3(2,NML)*A(N)*B(M)
S9 = T3(2,NpML)*(B(N)-BR(N))*A(M)
S10 = T3(2,NtML)*B(N)*B(M)
Sll PIM*T3(3tNMtL)*B(N)*B(M)
S12 S=10 - 2.*S11
R2 = PIM*T3(1pNMvL)*C(N)*B(M)
R3 = PIM*T3(2,N,MPL)*B(N)*C(M)
R4 = T3(1,NMtL)*C(N)*C(M)
U2 = PIM*T3(1,L,MN)*A(N)*R(M)
U3 = T3(1INLM)*C(N)*C(M)*PIM
U4 = PIM*T3(3,NLm)*B(N)*C(M)
U5 = PIN*T3(4,NLM)*B(N)*C(M)
U6 = T3([1LMN)*B(N)*C(M)
SUMM1 = SUMM1 + S3 + 54 - UE*55 + Q1*(S6+S8) -2.*T(N)*UE*S9

1 + Q2*S12
SUMM2 = SUMM2 + R2 - GAMMA*R3 - GT1*R4 - Ql*(GAMMA*S1O - GP1*S11)

1 - Q2*GAMMA*512
SUMM3 = SUMM3 + U2/GAMMA - U3 - QIl*(U4 - U5 + U6)

130 CONTINUE
200 CONTINUE

SUMNI = SUMN1 + SUMMI + UE*S1 - Q1*S2

C
C
C
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SUMN2 = SUMN2 + SUMM2 + UE*R1 + GAMMA*Q1*S2
SUMN3 = SUMN3 + SUMM3 - UE*U1

110 CONTINUE
F1(L) = SO + 29*SUMN1
F2(L) = RO + 2.*SUMN2
F3(L) = UO + 2,*SUMN3

100 CONTINUE
DO 300 L=1INEQ
UBN = 0.0
DO 310 N:1NEQ
U8 T2(ltLtN)*F2(N)
UBM = 00
IF (LINEQ.1) GO TO 320
DO 330 :M=1NEQ
U9 T3(3,NpLpM)*B(N)*F2(M)

330 U8M = U81 + U9
320 CONTINUE

UBN = U8N - 01*U8 - Q2*U8M*2.
310 CONTINUE

RA(L) = F1(L)
RB(L) = F2(L)
RC(L) = F3(L) + 2.*tJ8N

300 CONTINUE
RETURN
END
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